

Wir schaffen Wissen – heute für morgen

The fast-timing detector system for the 10 Tesla μ SR instrument

Paul Scherrer Institut

Jose Rodriguez, Robert Scheuermann, Kamil Sedlak, <u>Alexey Stoykov</u>, Alex Amato.

Current Status of High Field in µSR

µSR users have a big demand for high magnetic field spectrometers: http://lmu.web.psi.ch/facilities/PSI-HighFieldMuSR/Scientific_Case.pdf

PSI: $B \le 3T$. Time resolution = 425ps. Base temperature: 12mK

ISIS: $B \le 5T$. Time resolution in T F limited by pulse width (σ >10ns). Optimized for LF. Base temperature: 30mK

TRIUMF: $B \le 7T$. Instrument with the highest time resolution (170ps). Base temperature: 1.7K

Challenging requirements: $B_{MAX} = 9.5T$, field homogeneity 10ppm, time resolution better than 140ps, base temperature:15mK.

- **Magnet**. Split pair from **Oxford Instruments**. Warm bore (89mm). High homogeneity (<10ppm in 4mmX4mmX10mm).
- Cryogen-free **Dilution Refrigerator**. Custom design fully horizontal from **BlueFors**. Base temperature:15mK. Veto detector mounted in sample space.
- **2K Cryostat** Horizontal design. Veto detector mounted in sample space.
- **Detector system** <u>technical innovations required</u>!

A(B) / A(0) = exp(-2 (
$$\pi \sigma \gamma B$$
)²)

Traditionally, µSR detectors are based on **Photo Multiplier Tube** technology. 140ps is at the limit. Reason: PMT need light guides = light pulse broadening and attenuation.

New technology required:

- Compact (positron spiraling radius ~1cm @ 10T)
- Magnetic field insensitive
- Non magnetic components (10ppm homogeneity)

Geiger-mode Avalanche Photo Diodes are suited for µSR measurements A. Stoykov, *et al.*, Physica B, 404, 990 (2009)

- (1) Positron counter: EJ-232 10x10x5mm;
- (2) Muon counter: EJ-232 ø8x0.3mm in a 10x10x2mm frame (BC-800);
- (3) 2x MPPC S10362-33-050C (3x3mm², Hamamatsu)
- (4) scintillator + photosensor in a light tight box;
- (5) broad band amplifier (PSI, gain ~13, bandwidth ~ 600 MHz).

Detector prototype for High Field µSR

Detector prototype for High Field µSR

PAUL SCHERRER INSTITUT

Performance of the detector module

Time resolution of positron counters in this setup is **insensitive** to magnetic field

µSR measurements

µSR measurements

Quartz (muonium)

µSR measurements

Quartz (muonium)

Improve of σ at higher fields probably due to higher energy losses of positrons (longer curved trajectories).

Quartz (muonium)

Measured only with dedicated setups. **No standard** µSR spectrometer is capable of this measurement.

Isotropic Muonium hyperfine coupling = 4495 MHz

A real-size G-APD based prototype of the Timing detector has been built, and its performance is at the top of the expectations:

- **Insensitive** to the magnetic field.
- Time resolution of the detector = **77ps**.
- Total time resolution \approx **90ps**.

Acknowledgments:

Frontend electronics developed by PSI Electronics & Measuring-Systems Group (U. Greuter, U. Hartmann, R. Schmidt). Founding from: •RII3-CT-2003-505925 (FP6)

•NMI3:CP-CSA_INFRA-2008-1.1.1 Number 226507-NMI3(FP7)

PABL	SCIL	RER	I II ST	TITUT
	-	[Π	_
_				

• Active area $(1 - 10 \text{ mm}^2)$

G-APD: parameters

- Number of cells \rightarrow Dynamic range (100 10000 mm⁻²)
- Photon Detection Efficiency: **PDE** (λ , **U**)
- Gain: *M* (10⁴-10⁷)
- One-photon time resolution: $\sigma_{1ph}(\lambda, U)$
- Excess noise factor: $F = 1 + \sigma^2(M) / \langle M \rangle^2$
- Inter-pixel cross-talk: α(M)
- Operating voltage: \boldsymbol{U} (15 V 150 V)
- Dark current: I_0 (T, U) (10 nA 100 μ A/mm² at RT)
- Dark counts: $N_0(T, U)$ (0.1 10 MHz/mm² at RT)
- Cell recovery time (10 1000 ns)
- Temperature coefficient of gain: $(\Delta M / M) / T (0.1 10 \% / C)$
- Radiation hardness

Hamamatsu MPPC S10362-33-050C $3 \times 3 \text{ mm}^2$ PDE > 30% at 390 nm $M \sim 7.10^5$ $U \sim 70 \text{ V}$ $1/M^* dM/dT \sim 6\% / ^0\text{C}$

For applications requiring fast-timing with plastic scintillators the most important parameters are **PDE**, **M**, σ_{1ph} . Also should be taken into account the <u>temperature stability</u> and <u>the ability to withstand the radiation load</u>.

Dark current I_0 (and accordingly M) fluctuations do not exceed 5%

