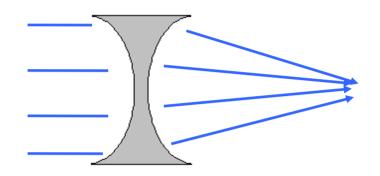


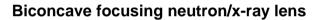
Refractive neutron optics for energy analysis and focusing

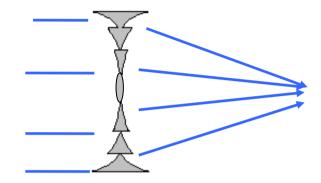
Thomas Krist

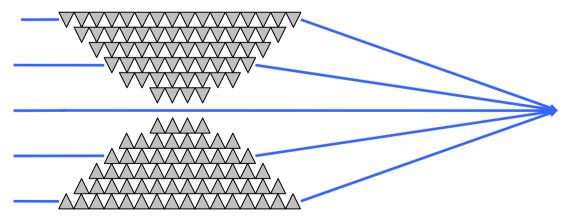
Energy analysis can be achieved by **dispersive optics** like refractive crystals or a magnetic field gradient.

Idea: Use stacked prism arrays to encode the neutrons wavelengths:


Important parameters:


- material of the prisms
- geometry of the prisms
- height of the prisms
- length of the EA


transmission and resolution


• Types of lenses

Fresnel lens for neutrons/x-rays

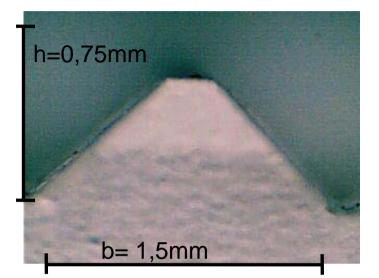
Prism or "Clessidra" lens for neutrons/ x-rays

$n = 1 - \delta - i\beta$ Index of refraction

Element	$\delta/(10^{-6})$	$\beta/(10^{-12})$	$\frac{\delta}{\beta}/(10^5)$
С	28.7	0.44	65.12
Be	36.8	1.20	30.71
MgF_2	19.3	3.67	5.25
Pb	11.8	6.00	1.97
Si	7.9	9.16	0.86
Ni	36.9	620.77	0.06

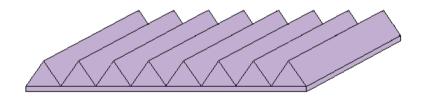
Dispersion and absorption of different elements for wavelength 4.9Å

Properties of the material:


- high refraction power
- small absorption
- small incoherent scattering
- easy to treat and fabricate
- inexpensive

Magnesium fluoride and silicon might be good candidates for a focusing and energy analysing device.

Properties of the sample

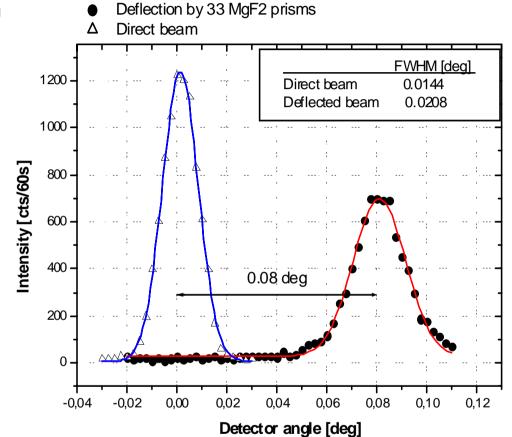

- 50x20x2mm³ single crystal block
- Upper 0.5mm with a prism structure
- 33 prisms, each with an angle of 45 deg to the basis of 1.5mm width

Microscopy picture of a single prism of the magnesium fluoride prism array

Index of refraction: n = 0.9999804 critical angle: $\Theta_{\chi\rho\tau\tau}$ = 0.358 deg deflection per prism: Θ =0.0022 deg Attenuation: μ = 0.03 cm⁻¹

Schematic description of the whole sample

Refraction and transmission

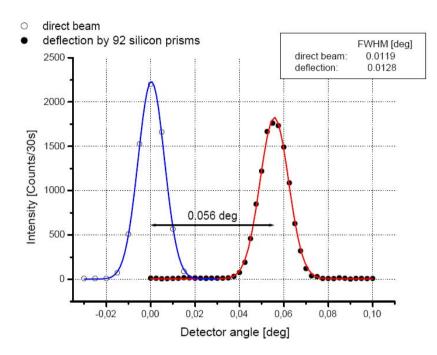

- Angle of refraction: 0.08 deg
- •Increase of the beam width: 0.015 deg
- Angular resolution: 0.02 deg
- Total transmission: 86%
- •Peak transmission: 54%
- •Refr. angle* Peak

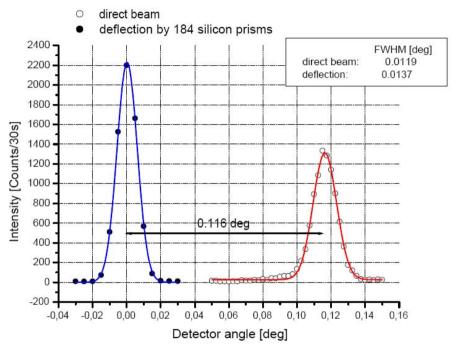
Transmission:

•0.047°

• Attenuation: 0.055 cm⁻¹

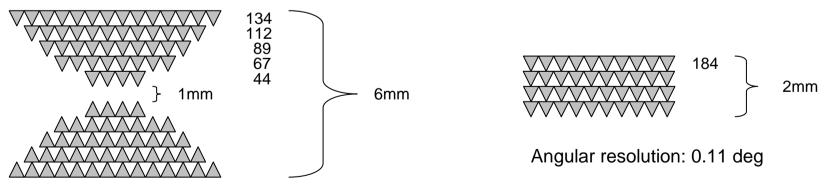
Properties of the sample


- 40 x 65 x 0.5 mm³ single crystal block
- 92 prisms, each with an angle of 54.7 deg to the basis of 0.7mm width


(for wavelength 4.9Å)

Index of refraction: n = 0.999992critical angle: $\Theta_{crit} = 0.23 \text{ deg}$ deflection per prism: $\Theta = 0.00064 \text{ deg}$ Attenuation: $\mu = 0.032 \text{ cm}^{-1}$

Refraction and transmission



- deflection: 0.056 deg
 increase of the beam width: 0.005 deg
 total transmission: 88%
 peak transmission: 82%
 attenuation coefficient: 0.029 cm⁻¹
- •defl. angle* peak transmission: 0.046°

- deflection: 0.116 deg
- increase of the beam width: 0.007 deg
- •total transmission: 77%
- •peak transmission: 59%
- attenuation coefficient: 0.030 cm⁻¹
- •defl. angle* peak transmission: 0.070°

Conclusion and Outlook

- Silicon prisms are good candidates for optical devices, because of the high transmission and the easy fabrication process.
- Going to finer structures (250µm 150µm thickness) will allow us to achieve higher deflections at the same transmission rate.
- Design of the first prototypes:

Focal length: 200cm

Thanks for your attention!