

Current Software and Practices

Ricardo FERRAZ LEAL

Institut Laue-Langevin

5th July 2012

NMI3-II
Data analysis software work-package 6

● Funding: 27 man-months started in June 2012.

1. Review existing data analysis software and practices of software
developers (2)

2. Review existing solutions for a common data analysis infrastructure (2)

3. Develop prototype software in chosen solution for representative
applications (14)

4. Evaluate prototype software (3).

● Proposed prototype:

– S(q,ω) 4D data from reactor based multiplexed Xtal instruments

● One candidate:

– Mantid <www.mantidproject.org>

– VATES for 4D visualisation

Current software

TOF
DAVE Data Analysis and Visualization Environment Inelastic Scattering (TAS,TOF,BS,spin echo)
Frida Flexible rapid interactive data analysis Inelastic Scattering (TOF and BS)
General
LAMP Large Array Manipulation Program General purpose
ISAW Integrated Spectral Analysis Workbench software project TOF
Mantid
Reflectivity
GenX Reflectivity
TAS
Mfit fit any type of (x,y) data with any fit function (even combinaisons) ALL
Mview manipulate and display up to 20 data files ALL
Rescal compute 4D resolution ellipsoid for inelastic scattering instrument Inelastic Scattering
SANS
DANSE Distributed Data Analysis for Neutron Scattering Experiments
Sansview SANS data analysis and modeling SANS
Grasp SANS
Sasfit analyzing and plotting small angle scattering data SANS
Crystallography
GSAS General Structure Analysis System Crystallography: powder + single crystal
EXPGUI Graphical user interface to GSAS
FullProf Suite Crystallography: powder + single crystal
PDFgui Pair distribution function fit (Gui for PDFFit2) Crystallography: single crystal
PDFfit2 Python version of PDFfit Crystallography: single crystal
Instrument Simulation
McStas Monte Carlo Simulation of TAS TAS, TOF, polarised neutrons
Restrax Monte Carlo simulations and data analysis TAS
Vitess Virtual Instrumentation Tool for the ESS ALL?
Vtas virtual Three Axis Spectrometer TAS

Version
stable Development

2.0 (2010)Yes (based on IDL 8)
2.1.4c (2012) yes

2012 yes
v. 1.9.1_12a (2012) yes

2.0.0 (2011) SVN

2005 not anymore?

2.1.1 (2012) yes
6.52 (2012) Yes

0.93.3 (2011-05-4) ?

2009 ?
2011 2012?

01/05/12 Not avaiable
2.0-r3067`(2009) No?
3.0-r3067`(2009) No?

1.12 (2012) yes
2011 yes

2.11(2011) yes
4.1 (2010?) No?

Name
TOF
DAVE
Frida
General
LAMP
ISAW
Mantid
Reflectivity
GenX
TAS
Mfit
Mview
Rescal
SANS
DANSE
Sansview
Grasp
Sasfit
Crystallography
GSAS
EXPGUI
FullProf Suite
PDFgui
PDFfit2
Instrument Simulation
McStas
Restrax
Vitess
Vtas

Name
TOF
DAVE
Frida
General
LAMP
ISAW
Mantid
Reflectivity
GenX
TAS
Mfit
Mview
Rescal
SANS
DANSE
Sansview
Grasp
Sasfit
Crystallography
GSAS
EXPGUI
FullProf Suite
PDFgui
PDFfit2
Instrument Simulation
McStas
Restrax
Vitess
Vtas

Language Libraries Extendable Source code

IDL 7.0 ? Yes (need IDL license)
C++ Yacc, Flex, Bison, GSL, gnuplot yes

IDL ? yes (IDL macros) Yes (need IDL license)
Java Jython yes (through operators) Yes

Python wxpython yes (scripts, plugins) yes

Matlab Yes (routines + fit functions) Yes (need Matlab license)

C++ (Python bindings) NumPy, SciPy, Matplotlib yes
Matlab ? Yes (need Matlab license)
C BLT for plotting yes (plugins in C) yes

C ? No?
tcl TCL Yes
Fortran CrysFML Difficult Partly (CrysFML)
Python yes
C++ (Python bindings) yes

C (Perl for scripting) (scilab/matlab/pgplot) yes (modules) yes
F77/90 RESCAL, VTAS Difficult Yes
C BLTwish, IDL, PV-Wave yes (modules) yes
Java no? No?

Name
TOF
DAVE
Frida
General
LAMP
ISAW
Mantid
Reflectivity
GenX
TAS
Mfit
Mview
Rescal
SANS
DANSE
Sansview
Grasp
Sasfit
Crystallography
GSAS
EXPGUI
FullProf Suite
PDFgui
PDFfit2
Instrument Simulation
McStas
Restrax
Vitess
Vtas

Simulation Reduction Visualisation Analysis Refinement (Rietveld analysis):

No yes yes yes No
No No

No yes yes yes No
No yes yes yes NA

No Yes (differential evolution algorithm for fitting)yes yes NA

No yes (fitting?) yes ? No

no
No yes yes yes NA
no ? yes yes NA

No Yes
No NA
No DataRED yes yes Yes

yes yes PDF
yes yes PDF

Yes NA NA NA NA
yes NA NA NA NA
yes NA NA NA NA
yes NA NA NA NA

GUI

+/-
No gui

-/+

+++

+/-

+ wxPython
+/-
TCL/TK

No Gui
+
+/- (winteracter)
+ wxPython
No Gui

Perl-TK
through SIMRES
+ (TCL/TK, IDL, PV-Wave)
++ / Swing

+ (Swing)

(bad) Practices

● Overlap of functionalities:

– Common functionalities in different software:
● Rewritten not imported!

● Poor collaboration:

– “Fork” projects rather than contribute

– e.g. Sassena @SNS (nMoldyn fork)
● Legacy code:

– Spaghetti code: too difficult and risky to modify

– Ongoing development in Fortran (e.g. crysFML)

– Lack of testing

(bad) Practices (cont...)

● Unstructured code:

– Lack of modules, objects, design patterns

– Ongoing development in procedural languages

– Difficult to (easily) extend

● Not all source code available

● Proprietary development frameworks:

– IDL, MatLab, IGOR, PV-wave

● Doesn't stimulate collaborative, pro-active
development.

● Attempts to “re-invent the wheel”:

– Gumtree, Mantid

Ideas for the Future

“Build to change instead of building to last.”

Rewriting vs Refactoring

Software Architecture:
in the Age of Compositionality

● Software engineering is changing
– Building systems was previously the predominant

activity

– Focus has more recently shifted toward
composing systems:

● Open-source
● Commercial and Proprietary components

– Only build the functionality that truly is
competitively differentiating!

● Short development cycles + client feedback

SOFTWARE ARCHITECTURE Lecture Notes in Computer Science, 2010, Volume 6285/2010, 1-4

http://www.springerlink.com/content/978-3-642-15113-2/
http://www.springerlink.com/content/0302-9743/

Production code

● “The longer the code you touch has been in
production without issues, the more risk you take by
changing it.”

● When the need arises to change the code:

– Is there a very good reason to do it?
● Quantify the benefit.

– Refactor the code

– Ensure that the code still works as it was designed
to

● If the code is known/proven to work, it's value far
exceeds how pretty or ugly it is!

The Value of ugly legacy code

● “The main thing that distinguishes legacy code from
non-legacy code is tests, or rather a lack of tests.”,
Michael Feathers, Working Effectively with Legacy Code

The Economics of Testing Ugly Code: http://www.1729.com

http://www.1729.com/

The Economics of Testing Ugly Code

How much does it cost to develop a line of
code?

● 2002: 10 Must Knows for CIOs

– ~$10 / line of code
● 2011: average salary $60K and 1850 hours worked

per year, 20Klines/year/member.

– between $12.33 and $18.5 / line of code.

● Technical debt: “it siphons money from IT innovation
to pay for software repairs.”

– 2010: CAST Software’s CRASH report:
● ~$3.61 / line of code
● Java: ~$5.42 / line of code

Solution for keeping legacy code:
TDD – Test Driven Development

● TDD cycle:

1.Create a unit test for a particular piece of legacy code

2.Run the unit test and make sure it passes

3.Refactor the code (in small safe steps) and check that
the unit test still passes

● Use Design Patterns

– Expose legacy methods through Façades

Writing the test: Creation of a form of specification.

– Always write the test before refactor!!!

Making the test pass: Fulfilment of the requirement.

Solutions for proprietary software

● Convert MATLAB code into a C or C++ shared
library using the MATLAB Compiler.

– Development version would always need
Matlab :(

● Same for IDL, PV-Wave, IGOR?
● Well documented façades

– Legacy code remains “invisible” for the
majority of future developers.

Façade

Wrapper Wrapper Wrapper

Legacy Code Legacy Code Legacy CodeLegacy Code Legacy Code Legacy Code

Wrapper

Façade

User defined
Algorithm

People seek pleasure

● “Did you ever wonder why cheap wine tastes
better in fancy glasses?”

– Emotion and cognition: Attractive things really
do work better!

Donald A. Norman - Emotional Design: Why We Love (Or Hate) Everyday Things

“It’s all about experiences”,
www.poetpainter.com

“It’s all about experiences”,
www.poetpainter.com

● Mantid:
– Usable, neither pleasurable nor meaningful

● Convenient (super easy to use?)

– Too many functionalities for end user.

– Same interface for user / scientist.

– “Eclipse” workspace+views concept would be
a plus:

● Per instrument:
– Scientist
– User

–

Questions?

References:

● Working Effectively with Legacy Code, Michael Feathers

● Refactoring: Improving the Design of Existing Code, Martin Fowler

● Refactor Low Hanging Fruit

– http://c2.com/cgi/wiki?RefactorLowHangingFruit

● What is Software Architecture?

– http://msdn.microsoft.com/en-us/library/ee658098.aspx

● When do I need to stop using design patterns?

– http://stackoverflow.com/questions/1295524/when-do-i-need-to-stop-using-design-patterns

● Emotional Design: Why We Love (Or Hate) Everyday Things,
Donald A. Norman

● www.poetpainter.com

●

http://c2.com/cgi/wiki?RefactorLowHangingFruit
http://msdn.microsoft.com/en-us/library/ee658098.aspx
http://stackoverflow.com/questions/1295524/when-do-i-need-to-stop-using-design-patterns
http://www.poetpainter.com/

● “You can create an absolutely beautiful architecture
with the cleanest code in the world. You may have
100% test coverage, complete separation of
concerns, flat hierarchies and methods without
boolean arguments. You may have all that beauty,
but still fail miserably if the program does not solve
user’s problems efficiently.” do-really-all-projects-fail-
because-of-code (www.targetprocess.com)

● In my experience, projects more often go wrong
when the solution tries to solve the wrong problem
rather than the implementation of that solution.

Key Architecture Principles

● Build to change instead of building to last.

– Consider how the application may need to change over time to address new
requirements and challenges, and build in the flexibility to support this.

● Model to analyze and reduce risk.

– Use design tools, modeling systems such as Unified Modeling Language (UML), and
visualizations where appropriate to help you capture requirements and architectural
and design decisions, and to analyze their impact. However, do not formalize the
model to the extent that it suppresses the capability to iterate and adapt the design
easily.

● Use models and visualizations as a communication and collaboration tool.

– Efficient communication of the design, the decisions you make, and ongoing changes
to the design, is critical to good architecture. Use models, views, and other
visualizations of the architecture to communicate and share your design efficiently
with all the stakeholders, and to enable rapid communication of changes to the
design.

● Identify key engineering decisions.

– Use the information in this guide to understand the key engineering decisions and the
areas where mistakes are most often made. Invest in getting these key decisions
right the first time so that the design is more flexible and less likely to be broken by
changes.

Current Software for data reduction, analysis
and visualisation

● Elastic Scattering

– Crystallography:
● Single crystal (Mono , Laue)
● Powder

– Liquid

– SANS:

– Reflectometry:
– (d3 and d7) polarised neutrons

– Spin-echo

● Inelastic scattering

– TAS:
● Spin-echo

– TOF:
– back scattering

Crystallography

● GSAS + EXPGUI

● FullPROF suit

● PDFfit2 + PDFGui (DANSE)

●

● Just Expgui (tcl) and Fullprof (Fortran) still being
developed

● GSAS no GUI and no source code available

● FullProf not all source code available, uses proprietary
software for GUIs. Data reduction available.

● PDFfit2 + PDFGui developed in python with C++
bindings. Gui in wxPython.

SANS

● Sansview (DANSE)

– C++ with python bindings. Guin in wxPython.

– Widely used. Still being developed.
● Grasp

– Matlab. Supports data reduction.

– Still being developed.
● Sasfit

– C. Plugin options. Gui in TCL+TK.

– Last version from 2011.

All supported in Osx, Win and Linux

Inelastic

● DAVE
– TAS, TOF, Back Scattering and Spin-echo

●

● Frida
– TAS, TOF, Back Scattering and Spin-echo

● IFit and Mfit + Mview + Rescal
– TAS

General purpose

● LAMP
● ISAW
●

Instrument simulation

● McStas
● Vitess
● Restrax : only for TAS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

