

A Muon JRA in FP7 – JRA5

Stephen Cottrell, ISIS Facility

JRA presentation General Assembly Villigen, CH 2009, March 31

Tasks in the JRA5

Management and dissemination)

leftechnologies for high-field instruments

Novel resonance techniques and simulation codes for complex experiments

Solution beamline control and modelling

Building on work started during FP6 ...

A broad collaboration

Partners:

- University of Parma, Italy
- University of Babes-Bolyai, Romania
- PSI Continuous Muon Facility, Switzerland
- ISIS Pulsed Muon Facility, UK (Coordinator)

Collaborators:

- Dubna, Russia
- University of East Anglia, UK
- RIKEN-RAL, Japan/UK
- University of British Columbia, Canada

JRA Tasks

Technologies for High Field Instruments

- Fast-timing detectors for high transverse field applications
- Design and simulation of a high field instrument for PSI
- Performance assessment of high-field operation at ISIS

Instrument Development – High Magnetic Fields

Simulations (FP6) have enabled us to design better detectors for high magnetic fields

and new instruments that will be evaluated during FP7 (HiFi, ISIS)

PSI will develop a High Field Spectrometer during FP7

Fast Timing Detectors

- Experiments in High Fields at PSI will require detectors that can provide:
- •Fast timing
- •Work in a High Magnetic Field
- Arrays will be designed using APD technology developed during FP6

APD detector array under development for the ALC beamline at PSI

Developing technologies for µSR at high pressures

- Development of a solid-sample pressure cell
- Development of gas-phase sample cell with RF coils

Pressure measurements

Develop Solid Sample cells to:

increase pressure above 2.5GPa,improve signal background

by

Exploring new Cell Materials,Studying new Cell GeometriesBeamline optimisation

Develop Gas cells to:

increase pressure to 200bar,provide RF measurements

by

Exploring new Cell Materials,
Integral RF coils
Using thick windows and a high momentum muon beam

14 bar gas cell developed with EPSRC funding

Novel Resonance Techniques and Simulation codes for Complex Experiments

- RFµSR experiments using NMR style pulsed techniques
- Development of an in-situ NMR spectrometer
- Simulation codes to support μSR experiment analysis

Pulsed RF Techniques

NMR style RF experiments can provide new information – these will be investigated during FP7

Simulation codes for analysis

Visualization of structure **plus**

magnetic moment

Search for muon sites by mapping electrostatic potentials and magnetic dipolar fields

Simulate µSR signals and compare to experiment

Muon Beamline Control and Modelling

- Development of techniques for beamline diagnostics
- Instrument simulation code to allow full instrument modelling
- Extension of Nexus file format to capture full parameters

Beamline Diagnostics

- Muon beamlines are complex and tuning can take many hours
- Diagnostic information is limited to:

In FP7 we will:

- Investigate methods for providing beamline diagnostics
- Extend final beam spot imaging to work in High Magnetic Fields
- Develop data formats to store beamline parameters for instrument simulation

Instrument Modelling

Simulation of the PSI ALC Spectrometer using GEANT

Modelling studies positron motion and detection:

In high field solenoid,Through cryostat walls,To a physical detector

Work in FP7 will generalise these simulations as a tool for instrument design and data analysis

Resources

- Three year Post-Doctoral worker based at STFC (Novel Resonance Techniques)
- Three year Post-Doctoral worker based at PSI (Technologies for High Field Instruments)
- Two year Post Doctoral worker based at Babes-Bolyai (µSR at High Pressures)
- One year Post Doctoral worker based at Parma (Simulation Codes)

plus funds for consumables and travel for regular meetings

Conclusion

Watch this space...

http://muon.neutron-eu.net/m_nmi3

where we will post project news and results