

JRANEUTRON OPTICS

WP1 High flux reflectometry and energy analysis

- WP1: High flux reflectometry and energy analysis (F. Ott)
 - Task 1: Reflective Optics Energy Analyzer (F.Ott)
 - Task 2: Refraction-encoded reflectometry (K. Andersen R. Cubbitt)
 - Task 3: Wavelength-encoding by Bragg diffraction (K. Andersen H. Ronnow)

High flux specular reflectometry

- Objective: gain in flux (1-2 orders of magnitude)
- How: use all the real space

- Possibilities:
 - *spin space encoding* (SERGIS)
 - time space encoding (TILTOF)
 - energy space encoding (EASYREF, GRADTOF, REFOCUS)

Energy – space encoding

Energy analysis after the sample

F. Ott, NIM A **584** (2008) 401-405. EASYREF: Energy analysis system for reflectometers.

- Key technologies
 - High m, without harmonics ML monochromators (m>3) (PSI)
 - Complex assembly of mirrors (HMI)
 - Objective 1: limited bandwidth system (5 25A°)

Energy encoding before the sample

Point source (white beam)

- F. Ott and A. Menelle, NIM A **586** (2008) 23–30.
- Key technologies
 - High m, without harmonics ML monochromators (m>3) (PSI)
 - Graded mirrors (PSI)
 - Elliptical curved mirror (TUM)
 - Objective 1: 2m long proof of principle setup with limited bandwidth system (5 - 25A°)

REFOCUS

Task 2: Refraction encoding (R. Cubitt, ILL)

R. Cubitt, NIM A **558**, 547 (2006).

Key technologies

- High resolution detector (0.5mm)
- Flat prism (ILL)
- Multiple prism array (HMI)

Task 3 : Wavelength-encoding by Bragg diffraction (K. Andersen – H. Ronnow)

Key technologies

- Stacked-crystal energy analysers
- Bundled-fibre energy analysis

Low risk Medium risk

Required key technologies

- High m, without harmonics ML monochromators (m>3)
- Graded coatings
- Elliptical mirrors
- Complex assembly of mirrors
- Stacked-crystal energy analysers
- Bundled-fibre energy analysis
- Ultra flat very large wafer
- Key issue: <u>low diffuse scattering from the optics</u>
- Present status: fine design of the designs is available
- To be done: demonstration prototypes

Outlook towards the future

- Implementation on real spectrometers
 - LLB EROS III
 - ILL D17